# ============================================================================
# ============================================================================
# Copyright (c) 2021 Nghia T. Vo. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# Author: Nghia T. Vo
# E-mail:
# Description: Python module for calculation techniques.
# Contributors:
# ============================================================================
"""
Module of calculation methods in the preprocessing stage:
- Calculating the center-of-rotation (COR) using a 180-degree sinogram.
- Determining the overlap-side and overlap-area between images.
- Calculating the COR in a half-acquisition scan (360-degree scan with
offset COR).
- Using the similar technique as above to calculate the COR in a
180-degree scan from two projections.
- Determining the relative translations between images using
phase-correlation technique.
- Calculating the COR using phase-correlation technique.
"""
import warnings
import numpy as np
import numpy.fft as fft
from scipy import stats
import scipy.ndimage as ndi
import multiprocessing as mp
from joblib import Parallel, delayed
[docs]def make_inverse_double_wedge_mask(height, width, radius, hor_drop=None,
ver_drop=None):
"""
Generate a double-wedge binary mask using Eq. (3) in Ref. [1].
Values outside the double-wedge region correspond to 1.0.
Parameters
----------
height : int
Image height.
width : int
Image width.
radius : int
Radius of an object, in pixel unit.
hor_drop : int or None, optional
Number of rows (2 * hor_drop) around the middle of the mask with values
set to zeros.
ver_drop : int or None, optional
Number of columns (2 * ver_drop) around the middle of the mask with
values set to zeros.
Returns
-------
array_like
2D binary mask.
References
----------
[1] : https://doi.org/10.1364/OE.22.019078
"""
du = 1.0 / width
dv = (height - 1.0) / (height * 2.0 * np.pi)
if hor_drop is None:
ndrop = min(20, int(0.05 * height))
else:
ndrop = np.clip(int(hor_drop), 1, height // 3)
if ver_drop is None:
ver_drop = 1
else:
ver_drop = np.clip(int(ver_drop), 1, width // 3)
ycenter = int(np.ceil((height - 1) / 2.0))
xcenter = int(np.ceil((width - 1) / 2.0))
mask = np.zeros((height, width), dtype=np.float32)
for i in range(height):
num = int(np.ceil(((i - ycenter) * dv / radius) / du))
(p1, p2) = np.int32(
np.clip(np.sort((-num + xcenter, num + xcenter)), 0, width - 1))
mask[i, p1:p2 + 1] = 1.0
mask[ycenter - ndrop:ycenter + ndrop + 1, :] = 0.0
mask[:, xcenter - ver_drop:xcenter + ver_drop + 1] = 0.0
return mask
[docs]def calculate_center_metric(center, sino_180, sino_flip, sino_comp, mask):
"""
Calculate a metric of an estimated center-of-rotation.
Parameters
----------
center : float
Estimated center.
sino_180 : array_like
2D array. 180-degree sinogram.
sino_flip : array_like
2D array. Flip the 180-degree sinogram in the left/right direction.
sino_comp : array_like
2D array. Used to fill the gap left by image shifting.
mask : array_like
2D array. Used to select coefficients in the double-wedge region.
Returns
-------
float
Metric.
"""
ncol = sino_180.shape[1]
center_flip = (ncol - 1.0) / 2.0
shift_col = 2.0 * (center - center_flip)
if np.abs(shift_col - np.floor(shift_col)) == 0.0:
shift_col = int(shift_col)
sino_shift = np.roll(sino_flip, shift_col, axis=1)
if shift_col >= 0:
sino_shift[:, :shift_col] = sino_comp[:, :shift_col]
else:
sino_shift[:, shift_col:] = sino_comp[:, shift_col:]
mat = np.vstack((sino_180, sino_shift))
else:
sino_shift = ndi.shift(sino_flip, (0, shift_col), order=3,
prefilter=True)
if shift_col >= 0:
shift_int = int(np.ceil(shift_col))
sino_shift[:, :shift_int] = sino_comp[:, :shift_int]
else:
shift_int = int(np.floor(shift_col))
sino_shift[:, shift_int:] = sino_comp[:, shift_int:]
mat = np.vstack((sino_180, sino_shift))
metric = np.mean(
np.abs(np.fft.fftshift(fft.fft2(mat))) * mask)
return metric
[docs]def coarse_search_cor(sino_180, start, stop, ratio=0.5, denoise=True,
ncore=None, hor_drop=None, ver_drop=None):
"""
Find the center-of-rotation (COR) using integer shifting.
Parameters
----------
sino_180 : array_like
2D array. 180-degree sinogram.
start : int
Starting point for searching COR.
stop : int
Ending point for searching COR.
ratio : float
Ratio between a sample and the width of the sinogram.
denoise : bool, optional
Apply a smoothing filter.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
hor_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
ver_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
Returns
-------
float
Center of rotation.
"""
if denoise is True:
sino_180 = ndi.gaussian_filter(sino_180, (3, 1), mode='reflect')
if ncore is None:
ncore = np.clip(mp.cpu_count() - 1, 1, None)
(nrow, ncol) = sino_180.shape
start_cor = int(np.clip(start, 0, ncol - 1))
stop_cor = int(np.clip(stop, 0, ncol - 1))
sino_flip = np.fliplr(sino_180)
sino_comp = np.flipud(sino_180)
list_cor = np.arange(start_cor, stop_cor + 1)
list_metric = np.zeros(len(list_cor), dtype=np.float32)
num_metric = len(list_metric)
mask = make_inverse_double_wedge_mask(2 * nrow, ncol, 0.5 * ratio * ncol,
hor_drop, ver_drop)
if ncore == 1:
for i, cor in enumerate(list_cor):
list_metric[i] = calculate_center_metric(
list_cor[i], sino_180, sino_flip, sino_comp, mask)
else:
list_metric = Parallel(n_jobs=ncore, prefer="threads")(
delayed(calculate_center_metric)(list_cor[i], sino_180, sino_flip,
sino_comp, mask) for i in
range(num_metric))
min_pos = np.argmin(list_metric)
if min_pos == 0:
msg = "Global minimum is out of the searching range. Please " \
"reduce the starting value !!!"
warnings.warn(msg)
if min_pos == (num_metric - 1):
msg = "Global minimum is out of the searching range. Please " \
"increase the stopping value !!!"
warnings.warn(msg)
return list_cor[min_pos]
[docs]def fine_search_cor(sino_180, start, radius, step, ratio=0.5, denoise=True,
ncore=None, hor_drop=None, ver_drop=None):
"""
Find the center-of-rotation (COR) using sub-pixel shifting.
Parameters
----------
sino_180 : array_like
2D array. 180-degree sinogram.
start : float
Starting point for searching COR.
radius : float
Searching range: [start - radius; start + radius].
step : float
Searching step.
ratio : float
Ratio between a sample and the width of the sinogram.
denoise : bool, optional
Apply a smoothing filter.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
hor_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
ver_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
Returns
-------
float
Center of rotation.
"""
if denoise is True:
sino_180 = ndi.gaussian_filter(sino_180, (2, 2), mode='reflect')
if ncore is None:
ncore = np.clip(mp.cpu_count() - 1, 1, None)
(nrow, ncol) = sino_180.shape
sino_flip = np.fliplr(sino_180)
sino_comp = np.flipud(sino_180)
list_cor = np.clip(
start + np.arange(-radius, radius + step, step), 0.0, ncol - 1.0)
list_metric = np.zeros(len(list_cor), dtype=np.float32)
num_metric = len(list_metric)
mask = make_inverse_double_wedge_mask(2 * nrow, ncol, 0.5 * ratio * ncol,
hor_drop, ver_drop)
if ncore == 1:
for i, cor in enumerate(list_cor):
list_metric[i] = calculate_center_metric(
list_cor[i], sino_180, sino_flip, sino_comp, mask)
else:
list_metric = Parallel(n_jobs=ncore, prefer="threads")(
delayed(calculate_center_metric)(list_cor[i], sino_180, sino_flip,
sino_comp, mask) for i in
range(num_metric))
return list_cor[np.argmin(list_metric)]
[docs]def downsample_cor(image, dsp_fact0, dsp_fact1):
"""
Downsample an image by averaging.
Parameters
----------
image : array_like
2D array.
dsp_fact0 : int
Downsampling factor along axis 0.
dsp_fact1 : int
Downsampling factor along axis 1.
Returns
-------
array_like
2D array. Downsampled image.
"""
(height, width) = image.shape
dsp_fact0 = np.clip(int(dsp_fact0), 1, height // 2)
dsp_fact1 = np.clip(int(dsp_fact1), 1, width // 2)
height_dsp = height // dsp_fact0
width_dsp = width // dsp_fact1
image_dsp = image[0:dsp_fact0 * height_dsp, 0:dsp_fact1 * width_dsp]
image_dsp = image_dsp.reshape(
height_dsp, dsp_fact0, width_dsp, dsp_fact1).mean(-1).mean(1)
return image_dsp
[docs]def find_center_vo(sino_180, start=None, stop=None, step=0.25, radius=4,
ratio=0.5, dsp=True, ncore=None, hor_drop=None,
ver_drop=None):
"""
Find the center-of-rotation using the method described in Ref. [1].
Parameters
----------
sino_180 : array_like
2D array. 180-degree sinogram.
start : float
Starting point for searching CoR. Use the value of
(width/2 - width/16) if None.
stop : float
Ending point for searching CoR. Use the value of
(width/2 + width/16) if None.
step : float
Sub-pixel accuracy of estimated CoR.
radius : float
Searching range with the sub-pixel step.
ratio : float
Ratio between the sample and the width of the sinogram.
dsp : bool
Enable/disable downsampling.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
hor_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
ver_drop : int or None, optional
Refer the method of "make_inverse_double_wedge_mask"
Returns
-------
float
Center-of-rotation.
References
----------
[1] : https://doi.org/10.1364/OE.22.019078
"""
(nrow, ncol) = sino_180.shape
if start is None:
start = ncol // 2 - ncol // 16
if stop is None:
stop = ncol // 2 + ncol // 16
dsp_row = 1
dsp_col = 1
if dsp is True:
if ncol > 1000:
dsp_col = int(np.floor(ncol / 640.0))
if nrow > 1000:
dsp_row = int(np.floor(nrow / 900.0))
sino_dns = ndi.gaussian_filter(sino_180, (3, 1), mode='reflect')
sino_dsp = downsample_cor(sino_dns, dsp_row, dsp_col)
radius = max(radius, dsp_col)
off_set = 0.5 * dsp_col
start = int(np.floor(1.0 * start / dsp_col))
stop = int(np.ceil(1.0 * stop / dsp_col))
raw_cor = coarse_search_cor(sino_dsp, start, stop, ratio,
denoise=False, ncore=ncore,
hor_drop=hor_drop, ver_drop=ver_drop)
fine_cor = fine_search_cor(sino_180, raw_cor * dsp_col + off_set,
radius, step, ratio, denoise=True,
ncore=ncore, hor_drop=hor_drop,
ver_drop=ver_drop)
else:
raw_cor = coarse_search_cor(sino_180, start, stop, ratio, denoise=True,
ncore=ncore, hor_drop=hor_drop,
ver_drop=ver_drop)
fine_cor = fine_search_cor(sino_180, raw_cor, radius, step, ratio,
denoise=True, ncore=ncore,
hor_drop=hor_drop, ver_drop=ver_drop)
return fine_cor
[docs]def calculate_curvature(list_metric):
"""
Calculate the curvature of a fitted curve going through the minimum
value of a metric list.
Parameters
----------
list_metric : array_like
1D array. List of metrics.
Returns
-------
curvature : float
Quadratic coefficient of the parabola fitting.
min_pos : float
Position of the minimum value with sub-pixel accuracy.
"""
radi = 2
num_metric = len(list_metric)
min_pos = np.clip(
np.argmin(list_metric), radi, num_metric - radi - 1)
list1 = list_metric[min_pos - radi:min_pos + radi + 1]
(afact1, _, _) = np.polyfit(np.arange(0, 2 * radi + 1), list1, 2)
list2 = list_metric[min_pos - 1:min_pos + 2]
(afact2, bfact2, _) = np.polyfit(
np.arange(min_pos - 1, min_pos + 2), list2, 2)
curvature = np.abs(afact1)
if afact2 != 0.0:
num = - bfact2 / (2 * afact2)
if (num >= min_pos - 1) and (num <= min_pos + 1):
min_pos = num
return curvature, np.float32(min_pos)
[docs]def correlation_metric(mat1, mat2):
"""
Calculate the correlation metric. Smaller metric corresponds to better
correlation.
Parameters
---------
mat1 : array_like
mat2 : array_like
Returns
-------
float
Correlation metric.
"""
metric = np.abs(
1.0 - stats.pearsonr(mat1.flatten('F'), mat2.flatten('F'))[0])
return metric
def __calc_overlap_metric(mat1, pos, offset, use_overlap, side, norm, wei_down,
wei_up, win_width, mat2_roi, mat2_roi_wei,
list_mean2):
mat1_roi = mat1[:, pos - offset:pos + offset]
if use_overlap is True:
if side == 1:
mat1_roi_wei = mat1_roi * wei_down
else:
mat1_roi_wei = mat1_roi * wei_up
if norm is True:
list_mean1 = np.mean(np.abs(mat1_roi), axis=1)
list_fact = list_mean2 / list_mean1
mat_fact = np.transpose(np.tile(list_fact, (win_width, 1)))
mat1_roi = mat1_roi * mat_fact
if use_overlap is True:
mat1_roi_wei = mat1_roi_wei * mat_fact
if use_overlap is True:
mat_comb = mat1_roi_wei + mat2_roi_wei
metric_val = (correlation_metric(mat1_roi, mat2_roi) +
correlation_metric(mat1_roi, mat_comb) +
correlation_metric(mat2_roi, mat_comb)) / 3.0
else:
metric_val = correlation_metric(mat1_roi, mat2_roi)
return metric_val
[docs]def search_overlap(mat1, mat2, win_width, side, denoise=True, norm=False,
use_overlap=False, ncore=None):
"""
Calculate the correlation metrics between a rectangular region, defined
by the window width, on the utmost left/right side of image 2 and the
same size region in image 1 where the region is slided across image 1.
Parameters
----------
mat1 : array_like
2D array. Projection image or sinogram image.
mat2 : array_like
2D array. Projection image or sinogram image.
win_width : int
Width of the searching window.
side : {0, 1}
Only two options: 0 or 1. It is used to indicate the overlap side
respects to image 1. "0" corresponds to the left side. "1" corresponds
to the right side.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
Returns
-------
list_metric : array_like
1D array. List of the correlation metrics.
offset : int
Initial position of the searching window where the position
corresponds to the center of the window.
"""
if ncore is None:
ncore = np.clip(mp.cpu_count() - 1, 1, None)
if denoise is True:
mat1 = ndi.gaussian_filter(mat1, (2, 2), mode='reflect')
mat2 = ndi.gaussian_filter(mat2, (2, 2), mode='reflect')
(nrow1, ncol1) = mat1.shape
(nrow2, ncol2) = mat2.shape
if nrow1 != nrow2:
raise ValueError("Two images are not at the same height!!!")
win_width = int(np.clip(win_width, 6, min(ncol1, ncol2) // 2 - 1))
offset = win_width // 2
win_width = 2 * offset # Make it even
ramp_down = np.linspace(1.0, 0.0, win_width)
ramp_up = 1.0 - ramp_down
wei_down = np.tile(ramp_down, (nrow1, 1))
wei_up = np.tile(ramp_up, (nrow1, 1))
if side == 1:
mat2_roi = mat2[:, 0:win_width]
mat2_roi_wei = mat2_roi * wei_up
else:
mat2_roi = mat2[:, ncol2 - win_width:]
mat2_roi_wei = mat2_roi * wei_down
list_mean2 = np.mean(np.abs(mat2_roi), axis=1)
list_pos = np.arange(offset, ncol1 - offset)
nump = len(list_pos)
if ncore == 1:
list_metric = np.ones(nump, dtype=np.float32)
for i, pos in enumerate(list_pos):
list_metric[i] = __calc_overlap_metric(mat1, pos, offset,
use_overlap, side, norm,
wei_down, wei_up,
win_width, mat2_roi,
mat2_roi_wei,
list_mean2)
else:
list_metric = Parallel(n_jobs=ncore, prefer="threads")(
delayed(__calc_overlap_metric)(mat1, list_pos[i], offset,
use_overlap, side, norm,
wei_down, wei_up, win_width,
mat2_roi, mat2_roi_wei,
list_mean2) for i in range(nump))
list_metric = np.asarray(list_metric)
min_metric = np.min(list_metric)
if min_metric != 0.0:
list_metric = list_metric / min_metric
return list_metric, offset
[docs]def find_overlap(mat1, mat2, win_width, side=None, denoise=True, norm=False,
use_overlap=False, ncore=None):
"""
Find the overlap area and overlap side between two images (Ref. [1]) where
the overlap side referring to the first image.
Parameters
----------
mat1 : array_like
2D array. Projection image or sinogram image.
mat2 : array_like
2D array. Projection image or sinogram image.
win_width : int
Width of the searching window.
side : {None, 0, 1}, optional
Only there options: None, 0, or 1. "None" corresponding to fully
automated determination. "0" corresponding to the left side. "1"
corresponding to the right side.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
Returns
-------
overlap : float
Width of the overlap area between two images.
side : int
Overlap side between two images.
overlap_position : float
Position of the window in the first image giving the best
correlation metric.
References
----------
[1] : https://doi.org/10.1364/OE.418448
"""
(_, ncol1) = mat1.shape
(_, ncol2) = mat2.shape
win_width = int(np.clip(win_width, 6, min(ncol1, ncol2) // 2))
if side == 1:
(list_metric, offset) = search_overlap(mat1, mat2, win_width, side,
denoise, norm, use_overlap,
ncore)
(_, overlap_position) = calculate_curvature(list_metric)
overlap_position = overlap_position + offset
overlap = ncol1 - overlap_position + win_width // 2
elif side == 0:
(list_metric, offset) = search_overlap(mat1, mat2, win_width, side,
denoise, norm, use_overlap,
ncore)
(_, overlap_position) = calculate_curvature(list_metric)
overlap_position = overlap_position + offset
overlap = overlap_position + win_width // 2
else:
(list_metric1, offset1) = search_overlap(mat1, mat2, win_width, 1,
norm, denoise, use_overlap,
ncore)
(list_metric2, offset2) = search_overlap(mat1, mat2, win_width, 0,
norm, denoise, use_overlap,
ncore)
(curvature1, overlap_position1) = calculate_curvature(list_metric1)
overlap_position1 = overlap_position1 + offset1
(curvature2, overlap_position2) = calculate_curvature(list_metric2)
overlap_position2 = overlap_position2 + offset2
if curvature1 > curvature2:
side = 1
overlap_position = overlap_position1
overlap = ncol1 - overlap_position + win_width // 2
else:
side = 0
overlap_position = overlap_position2
overlap = overlap_position + win_width // 2
return overlap, side, overlap_position
[docs]def find_overlap_multiple(list_mat, win_width, side=None, denoise=True,
norm=False, use_overlap=False, ncore=None):
"""
Find the overlap-areas and overlap-sides of a list of images where the
overlap side referring to the previous image.
Parameters
----------
list_mat : list of array_like
List of 2D array. Projection image or sinogram image.
win_width : int
Width of the searching window.
side : {None, 0, 1}, optional
Only there options: None, 0, or 1. "None" corresponding to fully
automated determination. "0" corresponding to the left side. "1"
corresponding to the right side.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
Returns
-------
list_overlap : list of tuple of floats
List of [overlap, side, overlap_position].
overlap : Width of the overlap area between two images.
side : Overlap side between two images.
overlap_position : Position of the window in the first
image giving the best correlation metric.
"""
list_overlap = []
num_mat = len(list_mat)
if num_mat > 1:
for i in range(num_mat-1):
results = find_overlap(list_mat[i], list_mat[i + 1], win_width,
side, denoise, norm, use_overlap, ncore)
list_overlap.append(results)
else:
raise ValueError("Need at least 2 images to work!!!")
return list_overlap
[docs]def find_center_360(sino_360, win_width, side=None, denoise=True, norm=False,
use_overlap=False, ncore=None):
"""
Find the center-of-rotation (COR) in a 360-degree scan with offset COR use
the method presented in Ref. [1].
Parameters
----------
sino_360 : array_like
2D array. 360-degree sinogram.
win_width : int
Window width used for finding the overlap area.
side : {None, 0, 1}, optional
Overlap size. Only there options: None, 0, or 1. "None" corresponding
to fully automated determination. "0" corresponding to the left side.
"1" corresponding to the right side.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
Returns
-------
cor : float
Center-of-rotation.
overlap : float
Width of the overlap area between two halves of the sinogram.
side : int
Overlap side between two halves of the sinogram.
overlap_position : float
Position of the window in the first image giving the best
correlation metric.
References
----------
[1] : https://doi.org/10.1364/OE.418448
"""
(nrow, ncol) = sino_360.shape
nrow_180 = nrow // 2 + 1
sino_top = sino_360[0:nrow_180, :]
sino_bot = np.fliplr(sino_360[-nrow_180:, :])
(overlap, side, overlap_position) = find_overlap(sino_top, sino_bot,
win_width, side, denoise,
norm, use_overlap, ncore)
if side == 0:
cor = overlap / 2.0 - 1.0
else:
cor = ncol - overlap / 2.0 - 1.0
return cor, overlap, side, overlap_position
[docs]def complex_gradient(mat):
"""
Return complex gradient of a 2D array.
"""
mat1a = np.roll(mat, -2, axis=1)
mat2a = mat1a - mat
mat2a[:, :2] = 0.0
mat2a[:, -2:] = 0.0
mat1b = np.roll(mat, -2, axis=0)
mat2b = mat1b - mat
mat2b[:2] = 0.0
mat2b[-2:] = 0.0
mat2 = mat2a + 1j * mat2b
return mat2
[docs]def find_shift_based_phase_correlation(mat1, mat2, gradient=True):
"""
Find relative translation in x and y direction between images with
haft-pixel accuracy (Ref. [1]).
Parameters
----------
mat1 : array_like
2D array. Projection image or sinogram image.
mat2 : array_like
2D array. Projection image or sinogram image.
gradient : bool, optional
Use the complex gradient of the input image for calculation.
Returns
-------
ty : float
Translation in y-direction.
tx : float
Translation in x-direction.
References
----------
[1] : https://doi.org/10.1049/el:20030666
"""
if gradient is True:
mat1 = complex_gradient(mat1)
mat2 = complex_gradient(mat2)
(nrow, ncol) = mat1.shape
mat_tmp1 = fft.fft2(mat1) * np.conjugate(fft.fft2(mat2))
mat_tmp2 = np.abs(mat_tmp1)
mat_tmp2[mat_tmp2 == 0.0] = 1.0
mat3 = np.abs(fft.ifft2(mat_tmp1 / mat_tmp2))
(ty, tx) = np.unravel_index(np.argmax(mat3, axis=None), mat3.shape)
list_x = np.asarray([tx - 1, tx, tx + 1])
list_vx = np.asarray(
[mat3[ty, tx - 1], mat3[ty, tx], mat3[ty, (tx + 1) % ncol]])
list_y = np.asarray([ty - 1, ty, ty + 1])
list_vy = np.asarray(
[mat3[ty - 1, tx], mat3[ty, tx], mat3[(ty + 1) % nrow, tx]])
(afact_x, bfact_x, _) = np.polyfit(list_x, list_vx, 2)
(afact_y, bfact_y, _) = np.polyfit(list_y, list_vy, 2)
if afact_x != 0.0:
num = - bfact_x / (2 * afact_x)
if (num >= tx - 1) and (num <= tx + 1):
tx = num
if afact_y != 0.0:
num = - bfact_y / (2 * afact_y)
if (num >= ty - 1) and (num <= ty + 1):
ty = num
xcenter = np.ceil((ncol - 1) * 0.5)
ycenter = np.ceil((nrow - 1) * 0.5)
if ty > ycenter:
ty = -(nrow - ty)
if tx > xcenter:
tx = -(ncol - tx)
return ty, tx
[docs]def find_center_based_phase_correlation(mat1, mat2, flip=True, gradient=True):
"""
Find the center-of-rotation (COR) using projection images at 0-degree
and 180-degree.
Parameters
----------
mat1 : array_like
2D array. Projection image at 0-degree.
mat2 : array_like
2D array. Projection image at 180-degree.
flip : bool, optional
Flip the 180-degree projection in the left-right direction if True.
gradient : bool, optional
Use the complex gradient of the input image for calculation.
Returns
-------
cor : float
Center-of-rotation.
"""
ncol = mat1.shape[-1]
if flip is True:
mat2 = np.fliplr(mat2)
tx = find_shift_based_phase_correlation(mat1, mat2, gradient=gradient)[-1]
cor = (ncol - 1.0 + tx) * 0.5
return cor
[docs]def find_center_projection(mat1, mat2, flip=True, win_width=None,
chunk_height=None, start_row=None, denoise=True,
norm=False, use_overlap=False, ncore=None):
"""
Find the center-of-rotation (COR) using projection images at 0-degree
and 180-degree based on a method in Ref. [1].
Parameters
----------
mat1 : array_like
2D array. Projection image at 0-degree.
mat2 : array_like
2D array. Projection image at 180-degree.
flip : bool, optional
Flip the 180-degree projection in the left-right direction if True.
win_width : int, optional
Width of the searching window.
chunk_height : int or float, optional
Height of the sub-area of projection images. If a float is given, it
must be in the range of [0.0, 1.0].
start_row : int, optional
Starting row used to extract the sub-area.
denoise : bool, optional
Apply the Gaussian filter if True.
norm : bool, optional
Apply the normalization if True.
use_overlap : bool, optional
Use the combination of images in the overlap area for calculating
correlation coefficients if True.
ncore: int or None
Number of cpu-cores used for computing. Automatically selected if None.
Returns
-------
cor : float
Center-of-rotation.
References
----------
[1] : https://doi.org/10.1364/OE.418448
"""
(nrow, ncol) = mat1.shape
if flip is True:
mat2 = np.fliplr(mat2)
if win_width is None:
win_width = min(250, int(0.2 * ncol))
if chunk_height is None:
chunk_height = min(500, int(0.9 * nrow))
if isinstance(chunk_height, float):
if 0.0 < chunk_height <= 1.0:
chunk_height = int(chunk_height * nrow)
else:
chunk_height = min(500, int(0.5 * nrow))
chunk_height = np.clip(chunk_height, 1, nrow - 1)
if start_row is None:
start = nrow // 2 - chunk_height // 2
else:
start = np.clip(start_row, 0, nrow // 2 - chunk_height // 2)
stop = start + chunk_height
start = np.clip(start, 0, nrow - chunk_height - 1)
stop = np.clip(stop, chunk_height, nrow)
mat1_roi = mat1[start: stop]
mat2_roi = mat2[start: stop]
(overlap, side, _) = find_overlap(mat1_roi, mat2_roi, win_width, side=None,
denoise=denoise, norm=norm,
use_overlap=use_overlap, ncore=ncore)
if side == 0:
cor = overlap / 2.0 - 1.0
else:
cor = ncol - overlap / 2.0 - 1.0
return cor
[docs]def calculate_reconstructable_height(y_start, y_stop, pitch, scan_type):
"""
Calculate reconstructable height in a helical scan.
Parameters
----------
y_start : float
Y-position of the stage at the beginning of the scan.
y_stop : float
Y-position of the stage at the end of the scan.
pitch : float
The distance which the y-stage is translated in one full rotation.
scan_type : {"180", "360"}
One of two options: "180" for generating a 180-degree sinogram or
"360" for generating a 360-degree sinogram.
Returns
-------
y_s : float
Starting point of the reconstructable height.
y_e : float
End point of the reconstructable height.
"""
if not(scan_type == "180" or scan_type == "360"):
raise ValueError("!!! Please one of two options: '180' or '360'!!!")
if scan_type == "360":
y_s = y_start + pitch
y_e = y_stop - pitch
else:
y_s = y_start + pitch / 2.0
y_e = y_stop - pitch / 2.0
return y_s, y_e
[docs]def calculate_maximum_index(y_start, y_stop, pitch, pixel_size, scan_type):
"""
Calculate the maximum index of a reconstructable slice in a helical scan.
Parameters
----------
y_start : float
Y-position of the stage at the beginning of the scan.
y_stop : float
Y-position of the stage at the end of the scan.
pitch : float
The distance which the y-stage is translated in one full rotation.
pixel_size : float
Pixel size. The unit must be the same as y-position.
scan_type : {"180", "360"}
One of two options: "180" for generating a 180-degree sinogram or
"360" for generating a 360-degree sinogram.
Returns
-------
int
Maximum index of reconstructable slices.
"""
if not(scan_type == "180" or scan_type == "360"):
raise ValueError("!!! Please one of two options: '180' or '360'!!!")
y_s, y_e = calculate_reconstructable_height(y_start, y_stop, pitch,
scan_type)
max_index = int(((y_e - y_s) / pixel_size)) + 1
return max_index